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Abstract. In this paper, we investigate the dynamics of a hydrogen atom in high-frequency (several atomic
units) super strong (up to several tens of atomic units) laser fields within the high frequency Floquet
theory framework. The ionization rate, ionization spectrum, angular distribution and high-order harmonic
generation are all investigated. Our studies reveal the universal behavior of the total ionization rate, excess-
photon ionization spectrum and angular distribution of the ionization rate in the stabilization regime, and
achieve a deep insight into the dynamics of high-order harmonic generation in the stabilization regime.

PACS. 32.80.Rm Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states) –
32.80.Fb Photoionization of atoms and ions – 42.50.Hz Strong-field excitation of optical transitions in
quantum systems; multi-photon processes; dynamic Stark shift

1 Introduction

Great progress has been achieved on the topic of atoms
interacting with intense laser fields in recent years [1,2].
Many non-perturbative theories have been developed and
proved to be successful in explaining novel experimental
observations. Among these theories, the high frequency
Floquet theory (HFFT) developed by Gavrila and co-
workers [3,4] is one of the most satisfactory theories in the
studies of atomic behavior in high frequency laser fields. It
has successfully predicted the stabilization phenomenon,
and has been extended to various kinds of studies to pro-
vide insight into a variety of physical systems [5–11].

On the other hand, various kind of ab initio calculation
such as the Sturmian-Floquet approach [12], R-matrix
theory [13] and time-dependent calculations [14,15] have
shown undisputable stabilization in real hydrogen atoms.
However, for any real three-dimensional (3D) atom, most
studies based on HFFT are either confined to the atomic
structures [4,10], or the ionization dynamics under the
Born approximation [11]. In reference [5], the ionization
dynamics are investigated with the exact first-order HFFT
calculations, using a one-dimensional model atom and the
model atom has a short range potential. To our knowl-
edge, the systematic first order HFFT study of ionization
and especially high-order harmonic generation (HOHG)
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processes for real three-dimensional laser-atom interacting
systems is still lacking. However, in our previous work [16],
an iterative scheme for calculating both ionization rate
and high-order harmonic generation within the HFFT
framework was developed. For a one-dimensional (1D)
model atom, we find that we can obtain quite good ac-
curacy with much less numerical burden, compared with
the ab initio method. In this paper, we extend the above it-
erative method to the 3D hydrogen atom case and present
an intense investigation on the laser-hydrogen system in
the high-frequency regime.

This paper is organized as follows: in Section 2, we
present our numerical techniques for treating the laser-
atom interacting system in the three-dimensional case; in
Section 3, we give our numerical results on the total ion-
ization rate, partial ionization rates (excess-photon ioniza-
tion (EPI) distribution and angular distribution) and the
HOHG spectrum; in Section 4 we provide further discus-
sions on the numerical results. The final section contains
our concluding remarks.

2 The iterative treatment for a hydrogen
atom in high-frequency laser fields

The time-dependent Schrödinger equation (TDSE) of
a hydrogen atom interacting with linear polarized
(in z-direction) monochromatic laser fields in the
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Kramers-Henneberger (KH) frame [17] can be written as
(throughout this paper, atomic units m = e = ~ = 1 a.u.
are used)

i
∂

∂t
Ψ(r, t) =

(
− 1

2
∆+ V

(
r− α(t)ẑ

))
Ψ(r, t), (1)

where V (r) = −1/|r| is the atomic potential, and α(t) =
E/ω2 sin(ωt) = α0 sin(ωt) represents the free motion of
an electron in the external laser fields, E and ω are the
amplitude and frequency of the external field respectively,
and α0 = E/ω2 represents the free excursion of electrons
in the laser fields. Since α(t) is a periodical function, we
can expand V

(
r− α(t)ẑ

)
in Fourier series

V
(
r− α(t)ẑ

)
=
∑
n

Vn(r)e−inωt. (2)

In [16] we have developed an iterative method to seek
Floquet type solution

Ψ(r, t) = e−iEtψ(r, t) (3)

for equation (1), in which ψ(r, t) = ψ(r, t + T ), and T =
2π/ω is the period of the laser fields. The results can be
readily written as follows.

(1) Zeroth order: for asymptotically high frequency,
we can drop all the time-dependent terms, then Ψ(r, t) =
e−iE0tψ0(r), in which ψ0(r) and E0 are determined by

H0ψ0(r) = E0ψ0(r), (4)

H0 = −∆/2 + V0(r) is the KH Hamiltonian, and the cor-
responding state ψ0 is the KH state.

(2) First order:

Ψ(r, t) = e−iE0t

(
ψ0(r) +

∑
n

′
δψ(1)

n (r)e−inωt

)
, (5)

here
∑′ represents sum over all ns except n = 0.

δψ
(1)
n (r)(n 6= 0) is determined by

[(E0 + nω)−H0]δψ(1)
n (r) = Vnψ0(r). (6)

We require δψ
(1)
n (r) r→∞−→ (1/r)fn(r̂) exp[i(knr −

γn ln 2knr)] for open channels n > 0 (note that we have
made the high frequency assumption, i.e., the frequency
is higher than the binding energy−E0, so one-photon ion-
ization is always possible), and δψ

(1)
n (r) r→∞−→ 0 for closed

channel n < 0. kn is determined from k2
n/2 = E0 + nω,

and γn = −1/kn.
(3) Second order:

Ψ(r, t) = e−i(E0+δ2E)t

(
ψ0(r) + δ2ψ0(r)

+

(∑
n

′
δψ(2)

n (r)e−inωt

))
, (7)

here δ2E is determined by

δ2E =
〈
ψ0

∣∣∣∣∑
n

′
V−nδψ

(1)
n

〉
· (8)

δψ
(2)
n (r)(n 6= 0) and δ2ψ0(r) are determined by

[(E0 + nω + δ2E)−H0]δψ(2)
n (r) = Vnψ0(r), (9)

and

[E0 −H0]δ2ψ0(r) = −δ2Eψ0 +
∑
n

′
V−nδψ

(1)
n . (10)

The boundary conditions for δψ(2)
n (r) are roughly the same

as for δψ(1)
n (r), except that for δψ(2)

n (r) the kn is deter-
mined from k2

n/2 = E0 +δ2E+nω, and thus kn = k′n− ik′′n
(k′n, k′′n are real and we require k′n > k′′n > 0), and
γn = −1/k′n.

Due to the fact that the system has cylindrical sym-
metry, we can expand the wave functions and potential
functions in equations (1–10) with the spherical harmonic
functions: F (r) =

∑
l Fl(r)Yl(θ), here Yl(θ) is the spheri-

cal harmonic function and Fl(r) is function of the radial
coordinate r only. By using such expansion, we can sepa-
rate the radial part and angular part of the wave functions
and thus greatly simplify the calculation. Now we describe
our calculation procedure in some detail.

First, we solve equation (4) to find the KH state ψ0

and its eigenenergy E0 (in this paper we only consider
the ground state). To do this, we expand ψ0(r) and V0(r)
with spherical harmonic functions:

ψ0(r) =
∑
l

ψ0l(r)Yl(θ), (11)

and

V0(r) =
∑
l

V0l(r)Yl(θ), (12)

and then equation (4) can be written as the following cou-
pled differential equations,

− 1
2

(
1
r2

∂

∂r

(
r2 ∂

∂r

)
− l(l+ 1)

r2

)
ψ0l

+
∑
l1,l2

Cl1,l2,lV0l1ψ0l2 = E0ψ0l, (l = 0, 1, ...). (13)

In the above equations

Cl1,l2,l =

√
(2l1 + 1)(2l2 + 1)

4π(2L+ 1)
|〈l10l20|l0〉|2,

and 〈l10l20|l〉 is the Clebsch-Gordan (CG) coefficient. We
let g0l(r) = rψ0l(r), and we will find g0l(r) satisfies:

− 1
2

(
∂2

∂r2
− l(l+ 1)

r2

)
g0l +

∑
l1,l2

Cl1,l2,lV0l1g0l2 = E0g0l,

(l = 0, 1, ...). (14)
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In the above equations, we can separate the Hamiltonian
into two terms: Hk and HV , where

Hk = −1
2

(
∂2

∂r2
− l(l+ 1)

r2

)
acts only on the radial part of the wave function; and
HV =

∑
l1,l2

Cl1,l2,lV0l1g0l2 acts only on the angular part
of the wave function. Numerically, the above coupled
differential equations equals to a two-dimensional eigen-
value problem, so the imaginary time evolution method
can be used to obtain the ground state wave function
g0l(r) and eigenenergy E0. Due to the possibility of sep-
arating the Hamiltonian into two parts which acting on
the radial or angular part respectively, we can use the
Peaceman-Rachford alternative method to perform the
time evolution.

After the KH ground state is obtained, we turn our
attention to equation (6). Again, we expand δψ(1)

n (r, θ) in
spherical harmonic series δψ(1)

n (r, θ) =
∑
l δψ

(1)
nl (r)Yl(θ)

and set gnl(r) = rδψ
(1)
nl (r), then by the same argument,

equation (6) equals to the following coupled differential
equations:

(E0 + nω −Hk)gnl −HV gnl =
∑
l1,l2

Cl1,l2,lVnl1g0l2 ,

(l = 0, 1, ...) (15)

here Vnl is the lth spherical harmonic component of
Vn(r, θ), i.e., Vn(r, θ) =

∑
l Vnl(r)Yl(θ). To obtain gnl, we

use an iterative procedure, the (i + 1)th results can be
solved from the ith results from the following equation,

(E0 + nω −Hk)gi+1
nl − C0,l,lV00g

i+1
nl =∑

l1,l2

Cl1,l2,lVnl1g
i
0l2 +

∑
l′1,l2

Cl1,l2,lV0l1g
i
nl2 , (l = 0, 1, ...).

(16)

In the above equations
∑
l′1,l2

means summing over differ-
ent l1 and l2 except for the l1 = 0 term. The initial g0

nl can
be set to zero everywhere. We have V00 term in the left
part of the equations in order to stabilize the convergence
of the iterative procedure. The boundary conditions now
become gnl(r)

r→∞−→ fn exp[i(knr − γnln2knr)] for n > 0
and gnl(r)

r→∞−→ 0 for n < 0. Equations (9, 10) can be
solved in the same way as equation (6). Then putting δ2E,
δψ

(2)
n and δ2ψ0 in equation (7) will give the Floquet wave

function needed.
For the problems specified in this paper, we could also

take advantage of the form of the atomic potential to sim-
plify the calculation by noting the following equation:

1
|r− r′| =

{
1
r′
∑
l(
r
r′ )

lPl(cos θ) r < r′

1
r

∑
l(
r′

r )lPl(cos θ) r > r′.

Here θ is the relative angle between r and r′. So from
equation (12), Vnl for different l can be calculated sepa-
rately.

Having obtained the Floquet wave functions, the
physical information of the system can be calculated
right away. The ionization rate is just −2 Im δ2E. The
HOHG can be found by Fourier transforming the dipolar
momentum

d(t) =
〈
Ψ(r, t)

∣∣r cos(θ)
∣∣Ψ(r, t)

〉
, (17)

within one period, and the nth harmonic strength can be
written as

dn =
∑
m

dm,m+n =
∑
m

〈
φm(r, θ)

∣∣r cos(θ)
∣∣φm+n(r, θ)

〉
·

(18)

Here φm = δψ
(2)
m for m 6= 0, and φm = ψ0 + δ2ψ0 for

m = 0. Since we have cos(θ)Yl = alYl+1 + al−1Yl−1, with

al =
l + 1√

(2l + 1)(2l+ 3)
,

dn can be obtained directly in the (r, l) space. For the par-
tial ionization distribution, we need to return to the orig-
inal (r, θ) space. Following equation (40) of reference [4],
we have

dΓn
dΩ

= k′n|fn(R, θ)|2e2k′′nR/
∑
n

∫
V (r<R)

|ψ(2)
n |2dV, (19)

where R is the boundary set in the r direction and
fn(R, θ) =

∑
l fnl(R)Yl(θ);

∫
V (r<R) means the integration

over the space r < R. From equation (19) the angular dis-
tribution can be obtained by summing over different n and
the EPI spectrum can be obtained from integrating over
all directions for different channels n.

3 Numerical results

We now employ the above iterative approach to investi-
gate the ionization and HOHG of the hydrogen atom in
a high-frequency monochromatic laser field. Within the
HHFT frame, this model has been investigated intensely
in the literatures [4,10,11], but except for the atomic
structures [10] (dichotomy) and selected results of ioniza-
tion [5], other information such as the ionization rate, ion-
ization distribution and EPI spectrum are mostly obtained
under the Born approximation of the final state [11]. There
is no work on the high-order harmonic generation in the
stabilization regime within the HFFT to the best of our
knowledge. This is due to the fact that the HOHG spec-
trum cannot be obtained directly from the original HFFT,
which is a formal scattering theory. In the following, we
will investigate the high frequency laser-hydrogen system
with the efficient iterative method presented above. In
practical numerical calculations, the grid spacing ∆r in
the r direction should be small enough in order to in-
corporate the ionized energetic outgoing electron wave
packet; the grid extension in the r direction should be
large enough to contain the Floquet wave function; and
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Fig. 1. The KH ground state energy E0 versus α0.

we should sum over a large range of channels n in order
to obtain converged results for the ionization spectrum
and the HOHG. Due to the above requirements, we have
restricted the number of spherical harmonic basis in our
calculations to 32, since we are limited by the computer
memory size (we use PCs with 256MB memory). With
these parameters, we are able to obtain reliable numerical
results for α0 ranging from 0 to 5. We find that when α0 in-
crease further, the size of the spherical harmonic function
basis which is needed in order to obtain reliable numer-
ical results increases rapidly. The numerous l basis soon
make it difficult to do calculations on our computer. Other
calculations (either Floquet or wave-propagation) also ex-
perience the similar difficulties for large α0 [4,12]. How-
ever, with α0 as large as 5, we are well in the stabilization
regime, and the numerical results can reveal the dynami-
cal characters of ionization and HOHG in the stabilization
regime. Hence we confine α0 in the region α0 < 5 in our
calculation. With the parameters used in this paper, the
velocity of the electron is still well below light velocity,
and the range of the electron’s quiver motion is still much
smaller than the wavelength. Therefore, relativity effect
will not be significant and the dipole approximation is
still applicable.

First, we show the eigenenergy of the KH ground state
E0 versus α0 in Figure 1. This agree well with the results
obtained in reference [4], i.e., the ionization energy de-
creases rapidly as α0 increases. We then present the ion-
ization rate versus α0 in Figure 2 for ω = 1 and ω = 2.
Also plotted is the ionization rate obtained from an exact
Floquet method [12] (note that these results extend from
α0 = 0 to α0 = 4). We find quite a good agreement be-
tween our results and the exact results. Our results differ
from the exact results only quantitatively and the quan-
titative difference also diminished for α0 or ω large (i.e.,
when the high-frequency condition is fulfilled). From Fig-
ure 2 we find that the ionization rate decreases one order
of magnitude from α0 = 1 to α0 = 5 for ω = 1 and
nearly two orders of magnitude for ω = 2, which clearly
demonstrate the atomic stabilization. It should be empha-
sized that the oscillation behavior of ionization rate ver-
sus α0 in the 1D calculation [5,18,19] does not show up
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Fig. 2. The ionization rate versus α0 for ω = 1 (solid line with
symbol) and ω = 2 (dashed line with symbol); also plotted are
results from reference [4], ω = 1 (solid line) and ω = 2 (dashed
line).
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Fig. 3. The ionization rate versus ω for α0 = 5, solid line is
from the iterative method, and dashed line is from the original
the HFFT under the Born approximation.

in this three-dimensional case. We also demonstrate the
frequency dependence of the ionization rate for α0 = 5
in Figure 3, which shows a smooth decrease of ionization
rate versus frequency.

Secondly, we investigate the partial ionization rate. In
the following discussions, we have chosen two typical val-
ues for α0, 1 and 5. As we can observe from Figure 2,
at α0 = 1 the ionization rate curve roughly reaches its
maximum, while for α0 = 5, we are in the ionization
suppression (stabilization) regime. In Figure 4, we show
the angular distribution of ionization rate for α0 = 1 and
α0 = 5 with ω = 2. Obviously, for α0 = 1 the ionized
electrons are congregated around π/4 off the polarization
direction, this is characteristic of angular distribution in
ATI regime; while for α0 = 5, the angular distribution be-
come congregated along the direction perpendicular to the
polarization direction, and there are more oscillations in
the angular distributions. These results are qualitatively
in agreement with the analytical results in reference [4].
The frequency dependence of the angular distribution is
shown in Figure 5, three frequency are chosen: ω = 1,
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Fig. 4. The angular distribution of the ionization rate for
α0 = 1 (solid line) and α0 = 5 (dashed line), ω = 2.
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Fig. 5. The angular distribution of the ionization rate for ω =
1 (solid line), ω = 2 (dashed line) and ω = 3 (dotted line),
α0 = 5.
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Fig. 6. The EPI spectrum for α0 = 1 (solid line) and α0 = 5
(dashed line), ω = 2.

ω = 2 and ω = 3, and α0 = 5. We find that besides being
more and more aligned in the direction perpendicular to
the polarization direction, there are more and more oscil-
lations in the angular distributions as ω increases.

We also show the EPI distribution for α0 = 1 and
α0 = 5 in Figure 6, the frequency is ω = 2. It is clear that
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Fig. 7. The HOHG for α0 = 1 (solid line) and α0 = 5 (dashed
line), ω = 2.
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Fig. 8. The HOHG for ω = 1 (solid line), ω = 2 (dashed line)
and ω = 3 (dotted line), α0 = 5.

for α0 = 1 the ionization takes place mainly via single
photon processes and the multi-photon processes can be
neglected. For α0 = 5, however, the EPI distribution has a
long extended tail, which indicates that in the stabilization
regime the contributions from multi-photon process may
be also significant.

At last we turn to the HOHG in the stabilization
regime. In Figure 7, we show the HOHG spectrum for
α0 = 1 and α0 = 5 with ω = 2. We find that roughly,
the harmonic intensity will first decrease rapidly and then
decrease slowly as the harmonic order n is higher that 10.
For α0 = 5 there are also regimes where the harmonic
intensity increases with increasing harmonic order n, i.e.,
there are some oscillations in the HOHG spectrum. Such
behavior is also found in the one-dimensional case [16].
In Figure 8, we show the HOHG for ω = 1, ω = 2 and
ω = 3 with α0 = 5. We find the same behavior of a rapid
decrease followed by a slower decrease for various ω. We
find that for ω = 1 there is some kind of “cut off” be-
havior in the HOHG spectrum, however, before the “cut
off”, the character of HOHG spectrum holds, and the “cut
off” is not an abrupt decrease at some order n. We are
not sure if such a “cut off” will occur for ω = 2 and
ω = 3, but for these two cases, we find no significant de-
crease of the harmonic strength up to harmonic orders 100.
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The above results confirm that harmonics with very high
order can be generated in the stabilization regime (though
the efficiency seems not to be very high).

From Figures 7 and 8 we can find the universal char-
acters of the HOHG spectrum in the stabilization regime:
(i) the HOHG spectrum shows a rapid decrease for low or-
der harmonics followed by a slowly decreasing regime for
the higher order harmonics, no clear “cut off” is found;
(ii) in stabilization regime, HOHG are enhanced as de-
crease for either α0 or ω.

4 Further discussions and remarks
on the numerical results

The decrease of ionization rate has been predicted by the
original HFFT from both analytical argument and numer-
ical calculations under the Born approximation. We have
plotted the ionization rate calculated under the Born ap-
proximation in Figure 3. As is shown in [11], under the
Born approximation for linear polarization fn can be writ-
ten as:

fn =
1
πk2

n

∫ π

−π
einφeiα(φ)ẑ·knψ0

(
− α(φ)ẑ

)
dφ. (20)

By putting equation (20) in equation (19), integrating over
space and summing over n will give the total ionization
rate. However, from Figure 3 we find that, comparing with
the ionization rates under the Born approximation, the
ionization rate without the Born approximation is smaller.
Such discrepancies caused by the Born approximation also
exist in the simple one-dimensional model atom [5]. How-
ever, from our 3D results presented here, we could not
find the multiple stabilization and destabilization behavior
suggested by the one-dimensional calculations [18]. This
implies that the space average of ionization in different
directions suppresses the oscillation behavior. As we will
show latter, the mechanism which cause the oscillation of
ionization rate versus α0 in the one-dimensional calcula-
tion only manifests itself via the oscillation in the angular
distribution of the ionization rate in 3D case.

We then turn to the partial ionization distribution.
The character of angular distribution in stabilization
regime, as shown in Figures 4 and 5, is that as the ion-
ization rate decreases, the ionization becomes more and
more confined to the direction perpendicular to the po-
larization directions of the laser fields. This is due to the
fact that ionization in the stabilization regime is mainly
determined by the momentum transfer process. Since the
Vns are well extended along the polarization direction of
the laser fields and thus decrease the forces which can act
on the electrons, ionization is more likely to occur when
the electron is emitted near the direction perpendicular
to the polarization direction, where it will be more likely
for the electron to have “hard collision” with the atomic
core [20] and hence obtain enough energy to be ionized.
As we have said above, though the oscillation identified
from the one-dimensional calculations are not found in
the three-dimensional calculations, the mechanism which

cause the oscillations in one-dimension does show up in the
3D angular distributions. From equations (19, 20), the ion-
ization rate in different directions may be approximately
viewed as the ionization rate with different effective α0,
which in turn give rise to the oscillatory behavior in the
angular distributions. The mathematical origin of such os-
cillations can be traced back to the appearance of a Bessel
function in the approximation for the ionization rate [11].
The increase in oscillation strength with increasing fre-
quency ω or α0 is in agreement with the above physical
and mathematical pictures.

As for the EPI distribution, from Figure 6, we find that
the characteristic of the EPI distribution in the stabiliza-
tion regime is the long extended tail. From equation (6),
Γn can be formally expressed as

Γn = −2Im
〈
ψ0

∣∣V−nδψ(1)
n (r)

〉
= −2Im

〈
ψ0

∣∣∣∣V−n Vn(r)ψ0(r)
E0 −H0 + nω + iε

〉
· (21)

The ionization rate given by equation (21) is exactly equal
to the ionization rate given in [4] which takes a formal
scattering form,

Γn = 2π
∑
n

′
SE
∣∣〈uE |Vn|ψ0〉

∣∣2δ(En −E), (22)

where SE denotes the integration over energy space, and
uE is the continuum eigenstate of H0 with eigenenergy E.
As shown in reference [21], in the stabilization regime
(i.e. α0 is large), Vn’s magnitude decrease quite slowly
with n. On the other hand, Vn have n nodes within the
range of ±2α0 on the z-axis. This means that Vn will be
more and more oscillatory in coordinate space as n in-
creases. Since 〈uE |Vn|ψ0〉 can be approximately viewed as
a Fourier transformation of Vn|u〉 in energy space, the in-
crease of oscillation in Vn will slow down the decrement of
〈uE|Vn|ψ0〉 with n. So the partial ionization rate Γn will
decrease slowly for large α0.

Finally, we turn to the HOHG spectrum. From equa-
tion (18), dn is composed of different terms of dm,m+n,
since φ0(r, θ) ≈ ψ0(r, θ) is much larger than φn(r, θ) =
δψ

(2)
n (r, θ) (n 6= 0). At first glance, we may think that the

terms which contain φ0 will play a dominant role. If this
is true, the nth harmonic strength can be approximately
written as,

dan =
〈
δψ

(2)
−n(r)

∣∣z∣∣ψ0(r)〉 +
〈
ψ0(r)

∣∣z∣∣δψ(2)
n (r)

〉
· (23)

We present |dan|2 from equation (23) together with |dn|2
from equation (18) for α0 = 5 and ω = 2 in Figure 9.
|dan|2 only agrees with |dn|2 at n = 1, while for n > 1,
|dan|2 deviate from |dn|2 greatly. In fact, if we consider
|dan|2 only, we would conclude that there are no HOHG.
Further investigations on different terms of dm,m+n show
that for high order harmonics, the terms with m ∼ −n/2,
m ' 1 and m+ n ' 1 are dominant in dn. To explain the
above results, we expand δψn with a complete set of KH
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Fig. 9. The HOHG spectrum form equation (18) (solid line)
and from equation (23) (dashed line) for α0 = 5 and ω = 2.

states, then

dan = SE
〈
ψ0

∣∣z∣∣uE〉〈uE∣∣Vnψ0

〉
×
(

1
E2 −E + nω

+
1

E2 −E − nω

)
, (24)

where E2 = E0 + δ2E. In equation (24), we have used
the fact that V ∗−n = Vn and ψ0 and z are real. Firstly,
〈uE |Vnψ0〉 decrease rapidly with increasing E, so in equa-
tion (24), terms with low E will dominant. We can drop
E in the denominator of equation (24) if nω is large. Then
two terms of dan in equation (24) almost cancel each other
and dan scales as (nω)2, which is very small for large nω.
We find numerically that d0,n and d−n,0 almost have the
same magnitude but with different sign. Then we turn to
the terms of dm,m+n with either m or m+n equal to zero.
We combine dm,m+n and d−m−n,−m, and obtain

dn =
−[n2 ]∑
−∞

dm,m+n + d−m−n,−m,

dm,m+n + d−m−n,−m can be written as,

dm,m+n + d−m−n,−m =

SESE′
〈
ψ0Vm

∣∣uE′〉〈uE′∣∣z∣∣uE〉〈uE∣∣Vn+mψ0

〉
×
(

1
(E2

m −E′)(E2
m+n −E)

+
1

(E2
−m−n −E)(E2

−m −E′)

)
(25)

where, E2
i = E2 + iω. As discussed above, if both |m| and

|m+ n| are large, then for the integration SE and SE′ in
equation (25), the contribution from small E and E′ will
be dominant, and we can approximately drop E and E′.
The two terms have the same sign, and will not cancel each
other, so equation (25) scales as m(n+m)ω2 which may be
much smaller than (nω)2. The reason for the significance
of the m ∼ −n/2 term is that for this case, the numerator
is in a symmetric form (note that V ∗−n = V (n)). This
symmetry generally corresponds to a maximum, and thus

the numerator is larger than for other choice of ms. As
for the terms with m = 1 or m+ n = 1, if E or E′ is far
away from E2

1 , we can approximately drop E and E′ in
the denominator of equation (25), and the denominator
scales as nω2 (which is smaller than (nω)2). While for E
or E′ which is at the vicinity of E2

1 (note that E2
1 may not

be very large), the integration will approximately generate
a delta like function. This makes the denominator scales
with nω which is much smaller than (nω)2. The above two
reasons are mixed with each other in real calculations, and
contribute to the significance of the m = 1 or m + n = 1
terms.

The above discussions show that the HOHG picture
in the high-frequency stabilization regime differs from
the standard ionization-recombination picture [22]. In the
HOHG process the direct ionization-recombination pro-
cess does not play a dominant role, rather, the HOHG pro-
cess should be viewed as the transition between different
Floquet components which are induced by Vn in the os-
cillating KH frame, as indicated by equation (18) and the
above discussions. The dependence of HOHG on α0 and ω
can be explained from equation (25). As we had discussed
above, the contribution form the low energy part is dom-
inant in equation (25), and for low E and E′, decreasing
ω and α0 will make the denominator decrease and numer-
ator increase, and thus increase the harmonic generation.
The slow decreasing of the magnitude of the high-order
harmonics can be understood as follows: in equation (25),
from the discussions above, we find that the denominator
may scale with n as slowly as 1/n, and the numerator will
decrease slowly with n, thus as a whole, the magnitude
of high-order harmonics decrease slowly with increasing
harmonic order n.

5 Conclusion

In summary, using an efficient numerical technique devel-
oped recently, we make a thorough discussion on the ion-
ization and HOHG dynamics in the stabilization regime
within the Floquet formalism. Our study reveals the uni-
versal properties of ionization rate, angular distribution
and EPI distribution in the stabilization regime. More-
over, we have calculated the HOHG in the stabilization
regime and provide a novel physical picture of the HOHG
for an atom in a high-frequency laser fields. We hope these
theoretical studies will stimulate the experimental works
on atomic stabilization.

This project is supported by the strong field 973 Project. One
of us, T. Cheng, thanks Prof. R.M. Potvliege for kindly giving
us his numerical data.
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